ON THE CHOICE OF A CALCULATION SCHEME FOR A STATICALLY UNDETERMINED METAL FRAME

Bodnar Yu.I., candidate of technical sciences, associate professor, orcid.org/0000-0002-7196-2157, (Lviv National Agrarian University, town of Dublany)

For a single-span steel frame with rigid crossbar bolt the forces in the sections of the column at constant, snow, wind and crane loads have been determined. The calculations were performed using a software package ЛІРА-САПР 2016 (non-commercial version) for various calculation schemes. Schemes with replacement of a truss on a continuous crossbar have been used. Thus in scheme 1: we adhered only to the approximate ratios of bending stiffness; in scheme 2: for crossbars and columns there were set bending and axial stiffness calculated by known formulas that are based on loads, mechanical and geometric parameters; in scheme 3: for the crossbar we have set bending and axial stiffness determined on the basis of cross-sectional areas of the truss belts; and for the column the calculations were made by known formulas depending on the loads, mechanical and geometric parameters. The calculation scheme with a crossbar as a truss has also been used. The simulation results have indicated a slight change in effort when changing the axial stiffness. Thus, when reducing the axial stiffness by two orders of magnitude, the change in effort from constant, snow, wind and horizontal crane load has not exceeded 1.7%. The difference between the efforts that were obtained as a result of calculations in the approximate setting of the ratios of bending stiffness and setting of the stiffness (bending and axial) calculated according to the formulas based on loads, mechanical and geometric parameters does not exceed 7.5%. There is a large difference in moments in individual sections, but the values of bending moments in these sections are insignificant.
The difference between the forces obtained when replacing the truss with a beam and calculating its stiffness by bending moments and cross-sectional areas of the belts has been insignificant (in most sections does not exceed 10%). In some sections this difference is larger, but it should be noted that the amount of effort in these sections is insignificant. The difference in bending moments of about 10% for all sections occurs under both constant and snow loads. It should also be noted a more significant difference between the results of calculations regarding the calculation schemes with the farm and the corresponding beam. And as to wind loading it happened practically in all sections.

Ключові слова: рама, колона, ферма, статична невизначеність, сталь, внутрішні зусилля, розрахункова схема
frame structure, column, truss, static uncertainty, steel, internal forces, calculation scheme

Вступ. Одноізернові промислові будівлі часто проектуються по каркасній схемі із металевим каркасом. Особливо це стосується будівель із значними прольотами та кранами великої вантажопідйомності. Рама, як правило, є статично невизначеною, а ригель проектується у вигляді ферми. Тому актуальним є вивчення особливостей розрахунку таких несучих систем.

Аналіз останніх досліджень і публікацій. Особливості розрахунку розрахункових схем статично невизначених металевих рам, зокрема початкового вибору жорсткостей елементів, наведено у [1-5]. У статтях [6, 7] автори пропонують підходи до визначення жорсткостей ферм.

Постановка завдання. У статично невизначених системах, як відомо, зусилля при силових навантаженнях залежать від співвідношення жорсткостей елементів. Тому їх розрахунок є ітераційним і спочатку необхідно задати жорсткості (їх співвідношення). Дослідимо наскільки впливає заміна ферми на сучільний ригель та похибка у початковому задаванні жорсткостей на результати розрахунку. Дослідження проведено в рамках програмного комп'ютерного комплексу ЛІРА-САПР.

Методика та результати досліджень. При розрахунку статично невизначених сталевих рам рекомендовано [1-3] рекомендовано визначити жорсткості елементів на згинання формулими:
- для ригеля при невідомих перерізах поясів ферми
 \[EI_p = E \frac{M_{\text{max}} h_p}{2R_y} 1,15 \mu \]
 \((1) \)
- для підкранової частини колони
 \[EI_1 = E \left(\frac{(R_2 + 2D_{\text{max}}) h_1^2}{k_1 R_y} \right) \]
 \((2) \)
- для надкранової частини колони

106
У цих формулама M_{max} - максимальний згинальний момент в ригелі, як балці на двох шарнірних опорах, навантаженій постійним і сніговим навантаженням, h_p - висота ферми в середині прольоту, R_v - розрахунковий опір матеріалу конструкції, μ - коефіцієнт, який враховує ухил верхнього поясу і деформативність гратки ферми, R_2 - сила рівна опорній реакції ригеля, як шарнірної балки навантаженої постійним та сніговим навантаженням, D_{max} - максимальний тиск на колону від кранів, h_l - висота підкранової частини колони, k_1 - коефіцієнт, який залежить від кроку колон, k_2 - коефіцієнт, який враховує нерівність площ перерізів над крановою та підкранової частин колони, h_2 - висота надкранової частини колони.

При розрахунку без застосування програмних засобів цього досить, оскільки у класичних методах (метод сил, метод переміщень) ми нехтуємо впливом почергових та поздовжніх сил. При розрахунках із застосуванням програмних засобів (наприклад ЛІРА-САПР) необхідно знати також поздовжню жорсткість. Рекомендації для цього наведені у [2] :

- осьова жорсткість ригеля

$$E_{A_p} = 4EI_p / h_p^2$$

(4)

- осьова жорсткість підкранової частини

$$E_{A_1} = 4EI_1 / h_1^2$$

(5)

- осьова жорсткість надкранової частини

$$E_{A_2} = 4EI_2 / h_2^2$$

(6)

Також у [2] наведено формули для визначення жорсткостей ферми при відомих перерізах поясів ферми

$$EI_p = E(A_{f1}z_1^2 + A_{f2}z_2^2)$$

(7)

$$E_{A_p} = 2EA_f$$

(8)

У формулам A_{f1}, A_{f2} - площі перерізів нижнього та верхнього поясів ферми в середині прольоту, z_1, z_2 - відстані від центрів ваги поясів до нейтральної осі ферми в середині прольоту, $2A_f$ - площа перерізів поясів ферми.

Дослідження будемо проводити на прикладі однопролітної раминапостійної, снігове, вітрове і кранове навантаження згідно [1] (рис.1). Рама є статично невизначеною. Постійне навантаження: рівномірно розподілене на ригель 23.56 кН/м, рівномірно розподілене на надкранову частину колони 18.31 кН/м, на підкранову - 11.30 кН/м. Снігове навантаження: рівномірно розподілене на ригель 8.4кН/м. Кранове навантаження $D_{\text{max}}=2670.3\text{kH}$, $M_{\text{max}}=2002.7\text{kNm}$, $D_{\text{min}}=955.3\text{kH}$, $M_{\text{min}}=716.0\text{kNm}$, $T=89.8\text{kH}$. Вітрове навантаження: рівномірно розподілене по висоті від активного та пасивного тиску відповідно 2.77 кН/м та 2.08кН/м, зосереджене на рівні ригеля - відповідно 62.25кН та 46.69кН.

107
Рис.1 Розрахункові схема розрахункові перерізи рами
На основі формул (1 - 6) визначаємо жорсткості елементів (табл.1).

Таблиця 1

<table>
<thead>
<tr>
<th>№</th>
<th>Елемент рами</th>
<th>Жорсткість</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>згинальна, МН·м²</td>
</tr>
<tr>
<td>1</td>
<td>Ригель</td>
<td>5236</td>
</tr>
<tr>
<td>2</td>
<td>Підкренована частина колони</td>
<td>4078</td>
</tr>
<tr>
<td>3</td>
<td>Надкренована частина колони</td>
<td>1169</td>
</tr>
</tbody>
</table>

Співвідношення згинальних жорсткостей елементів

$$EI_2 / EI_1 / EI_p = 1169 / 4078 / 5236 \approx 1/3/4 \quad (9)$$

Розрахунок проведено в рамках ЛІРА-САПР. Результати розрахунків при прийнятій осьовій жорсткості набагато більшій за згинальну (аналог ручного розрахунку класичними методами) та співвідношенням між згинальними жорсткостями $EI_2/EI_1/EI_p=1/3/4$ наведені у таблиці 2.

Таблиця 2

<table>
<thead>
<tr>
<th>Період</th>
<th>Вид зусилля</th>
<th>Послідовно навантаження</th>
<th>Короткочасні навантаження</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>співголове</td>
<td>колону</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D_{max}</td>
<td>T_{max}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>колону</td>
<td>колону</td>
</tr>
<tr>
<td>1</td>
<td>М, кН.м</td>
<td>1260</td>
<td>453</td>
</tr>
<tr>
<td></td>
<td>N, кН</td>
<td>-420</td>
<td>-151</td>
</tr>
<tr>
<td>2</td>
<td>М, кН.м</td>
<td>736</td>
<td>261</td>
</tr>
<tr>
<td></td>
<td>N, кН</td>
<td>-534</td>
<td>-151</td>
</tr>
<tr>
<td>3</td>
<td>М, кН.м</td>
<td>602</td>
<td>223</td>
</tr>
<tr>
<td></td>
<td>N, кН</td>
<td>-534</td>
<td>-151</td>
</tr>
<tr>
<td>4</td>
<td>М, кН.м</td>
<td>-783</td>
<td>-285</td>
</tr>
<tr>
<td></td>
<td>N, кН</td>
<td>-719</td>
<td>-151</td>
</tr>
<tr>
<td></td>
<td>Q, кН</td>
<td>84.5</td>
<td>31</td>
</tr>
</tbody>
</table>

108
Результати моделювання вказують на незначну зміну зусиль при зміні осової жорсткості. Так при осівій жорсткості рівній згинальній (зменшенні її на два порядки) зміна зусиль від постійного, снігового, вітрового та горизонтального кранового навантаження не перевищує 1,7%. Суттєвіше ця зміна впливає на зусилля від вертикального кранового навантаження. Різниця сягає 11%.

Визначимо зусилля у перерізах рами, прийнявши згинальні та осові жорсткості наведені у таблиці 1. Результати подані у таблиці 3.

Таблиця 3

<table>
<thead>
<tr>
<th>Переріз</th>
<th>Вид зусилля</th>
<th>Постійне навантаж.</th>
<th>Короткочасні навантаження</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>снігове</td>
<td>від двох кранів</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ліву</td>
<td>пра ву</td>
</tr>
<tr>
<td>1</td>
<td>M, кН·м</td>
<td>1190</td>
<td>429</td>
</tr>
<tr>
<td>N, кН</td>
<td>-420</td>
<td>-151</td>
<td>-151</td>
</tr>
<tr>
<td>2</td>
<td>M, кН·м</td>
<td>691</td>
<td>245</td>
</tr>
<tr>
<td>3</td>
<td>M, кН·м</td>
<td>558</td>
<td>207</td>
</tr>
<tr>
<td>N, кН</td>
<td>-534</td>
<td>-151</td>
<td>-151</td>
</tr>
<tr>
<td>4</td>
<td>M, кН·м</td>
<td>-770</td>
<td>-280</td>
</tr>
<tr>
<td>N, кН</td>
<td>-719</td>
<td>-151</td>
<td>-151</td>
</tr>
<tr>
<td>Q, кН</td>
<td>80.9</td>
<td>29.7</td>
<td>82.6</td>
</tr>
</tbody>
</table>

Різниця зусиль отриманих в результаті розрахунків при приблизному співвідношенні жорсткостей та жорсткостях (згинальних та осових) підрахованих згідно формул (1)-(6) не перевищує 7.5%. Велика різниця по моментах має місце у перерізах 4 (для вертикального кранового навантаження на ліву колону) та у перерізах 2, 3 (для горизонтального кранового навантаження). Слід зауважити, що при цьому величини згинальних моментів у цих перерізах є незначними. Також має місце різниця у результатах по моментах біля 20% у перерізах 2,3 від вітрового навантаження.

При виконанні розрахунків із застосуванням програмних засобів можна не замінюти ферму покриття на балку. Але при цьому необхідно знати переризи елементів ферми. Слідуючи формулам (7), (8) необхідно хоча б перерізи поясків. Для нашої задачі у [1] виконано розрахунок ферми та підібрано переризи її елементів. Визначимо зусилля в рамі із застосуванням цих результатів (таблиця 4)
<table>
<thead>
<tr>
<th>Переріз</th>
<th>Вид зусиль</th>
<th>Постійне навантаж.</th>
<th>спільне</th>
<th>Короткочасні навантаження</th>
<th>від двох кранів</th>
<th>вітрове</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dmax на колону</td>
<td>Tmax на колону</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ліву</td>
<td>праву</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>М, кН·м</td>
<td>1230</td>
<td>441</td>
<td>-244</td>
<td>182</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>N, кН</td>
<td>-420</td>
<td>-151</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>M, кН·м</td>
<td>659</td>
<td>233</td>
<td>-717</td>
<td>-284</td>
<td>265</td>
</tr>
<tr>
<td></td>
<td>N, кН</td>
<td>-534</td>
<td>-151</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>M, кН·м</td>
<td>526</td>
<td>196</td>
<td>1290</td>
<td>429</td>
<td>263</td>
</tr>
<tr>
<td></td>
<td>N, кН</td>
<td>-534</td>
<td>-151</td>
<td>-2660</td>
<td>-967</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>M, кН·м</td>
<td>-978</td>
<td>-555</td>
<td>56.3</td>
<td>-803</td>
<td>-785</td>
</tr>
<tr>
<td></td>
<td>N, кН</td>
<td>-719</td>
<td>-151</td>
<td>-2660</td>
<td>-967</td>
<td></td>
</tr>
<tr>
<td>Q, кН</td>
<td>91.7</td>
<td>33.5</td>
<td>75.2</td>
<td>75.2</td>
<td>63.9</td>
<td>25.9</td>
</tr>
</tbody>
</table>

Виконаємо також розрахунки прийнявши згіннуальну та осьову жорсткість ригеля на основі реальних розмірів поясів ферми посередині прольоту [1] (верхній пояс 200x160x8, нижній пояс 160x7) згідно формул (7), (8).
Результати наведені у таблиці 5.

Таблиця 5

<table>
<thead>
<tr>
<th>Переріз</th>
<th>Вид зусиль</th>
<th>Постійне навантаж.</th>
<th>спільне</th>
<th>Короткочасні навантаження</th>
<th>від двох кранів</th>
<th>вітрове</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dmax на колону</td>
<td>Tmax на колону</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ліву</td>
<td>праву</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>М, кН·м</td>
<td>1310</td>
<td>470</td>
<td>-203</td>
<td>299</td>
<td>86.8</td>
</tr>
<tr>
<td></td>
<td>N, кН</td>
<td>-420</td>
<td>-151</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>M, кН·м</td>
<td>753</td>
<td>267</td>
<td>-713</td>
<td>-211</td>
<td>267</td>
</tr>
<tr>
<td></td>
<td>N, кН</td>
<td>-534</td>
<td>-151</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>M, кН·м</td>
<td>619</td>
<td>229</td>
<td>1290</td>
<td>502</td>
<td>266</td>
</tr>
<tr>
<td></td>
<td>N, кН</td>
<td>-534</td>
<td>-151</td>
<td>-2660</td>
<td>-969</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>M, кН·м</td>
<td>-846</td>
<td>-307</td>
<td>-54.8</td>
<td>-847</td>
<td>-729</td>
</tr>
<tr>
<td></td>
<td>N, кН</td>
<td>-719</td>
<td>-151</td>
<td>-2660</td>
<td>-969</td>
<td></td>
</tr>
<tr>
<td>Q, кН</td>
<td>89.3</td>
<td>32.7</td>
<td>82.2</td>
<td>82.6</td>
<td>60.7</td>
<td>29.1</td>
</tr>
</tbody>
</table>

Із аналізу результатів (таблиці 3-5) можна зробити висновки, що різниця між зусиллями отриманими при заміні ферми балкою та підрахунку її жорсткостей за згінними моментами та за перерізами поясів є незначною (в більшості перерізів не перевищує 5%). В окремих перерізах ця різниця є більшою, але слід зауважити що величина зусиль у цих перерізах є незначною.
Також слід відмітити суттєвішу різницю між результатами розрахунків за розрахунковими схемами з фермою та єквівалентною балкою (рис.2, 3). На рисунках позначення відповідає розрахунковій схемі із ригелем фермою, розрахунковій схемі із жорсткістю суцільного ригеля згідно згинального моменту, розрахунковій схемі із жорсткістю суцільного ригеля згідно перерізів поясів ферми.

Рис.2. Графіки моментів у лівій колоні від постійного навантаження (0 внизу)

Рис.3. Графіки моментів у лівій колоні від D_{max} на лівій колоні(0 внизу)

Висновки. При попередньому призначені жорсткостей елементам сталевої одно продітної рами із жорстким з'єднаннями ферми та колон можна користуватися відомими формулами (1)-(8) для визначення жорсткостей. Різниця у величинах визначених зусиль у більшості перерізів колон при заданні жорсткостей ригеля згідно формул (1)-(6) та згідно формул (7), (8) не перевищує 10%.

При заміні ферми балкою та підрахунку її жорсткостей за згинальними моментами та за перерізами поясів різниця у згинальних моментах для усіх перерізів біля 10% має місце при постійному та сніговому навантаженні.
Слід відмітити суттєвішу різницю між результатами розрахунків за розрахунковими схемами з фермою та еквівалентною балкою. Причому це спостерігається для вітрового навантаження практично у всіх перерізах.

6. Калащикова О.В. Влияние геометрии решетки ферм с параллельными поясами на её жесткость. Строительство и реконструкция. 2012. № 4. С. 41-47.

ANCHORAGE AND STRENGTHENED DESIGN OF REINFORCED CONCRETE ELEMENTS BY COMPOSITE MATERIALS

Borisyyuk A.P., PhD, associate professor; Ziatyiuk Y.Y., PhD, senior teacher, Zinchk Y. I., student, Matveev M.V. student; Soloshko A. M. student (National University of Water and Environmental Engineering, Rivne)

In European practice, carbon fiber materials of the Swiss company Sika, in particular SikaCarbodur tape and Sika Wrap canvas, which can be used to strengthen both inclined and normal sections of bending reinforced concrete structures, have become widely used. In addition, Sika Wrap can also be used to anchor SikaCarbodur tapes. Its advantage, which differs from all other methods - is simplicity and extremely low complexity. Usually there are two main reasons for strengthening structures at the same time. This is an unsatisfactory technical condition of the object, and an increase in the level of various types of loads acting on the object and exceeding the value of bearing capacity. Strengthening the structure is almost always a task that requires an individual approach from a technical and economic point of view.

Re in for cement of structures with the help of composite tapes based on carbon fibers is a universal method. It is effective in strength hening, concrete, wood, metal, stone and other structures. Separation with composite materials is a competitive method. In general, a significant reduction in the cost of rein for cement is achieved by reducing the time of execution of works, due to the simpli city of rein for cement