ВЕЛИКОМАСШТАБНЕ ТОПОГРАФІЧНЕ ЗНІМАННЯ ДЛЯ ПОТРЕБ БУДІВНИЦТВА З ВИКОРИСТАННЯМ СУЧАСНИХ ТЕХНОЛОГІЙ

LARGE-SCALE TOPOGRAPHIC SURVEYING FOR CONSTRUCTION NEEDS USING MODERN TECHNOLOGIES

Якімцов Ю.В., к.т.н., доцент кафедри БВУП, ORCID.ORG /0000-0001-9960-5189, Левченко Н.М., д.держ.унр, професор кафедри БВУП, ORCID.ORG /0000-0002-3283-6924, Чуприна Л.В., к.т.н., доцент кафедри БВУП, ORCID.ORG /0000-0002-4807-1479, Малиюков К.О. магістрант, ORCID.ORG /0009-0004-6422-4748, (Національний Університет «Запорізька політехніка»)

В статті розглянуто процес проведення топографо-геодезичних робіт з використанням сучасних технологій і штучних супутників Землі (ШСЗ) як прогресивних методів якісного виконання прикладних задач з визначення координат будівельних об'єктів та земельних ділянок для будівництва. Обґрунтовано, що супутникові навігаційні системи є сімбіозом космічних технологій, пристроїв й наземного обладнання та надають широкий спектр їх використання в геодезії та топографії, оскільки забезпечують міліметрову точність, скорочення часу вимірювань, а отже і скорочення витрат на їх виконання. Наголошено, що методи супутникової геодезії умовно поділяються на: геометричні та динамічні. Коротко викладено характеристику кожного з них. Доведено, що сучасна геодезія відіграє вирішальну роль у будівництві, забезпечуючи точну та ефективну зйомку і картографування, покращуючи інформаційне моделювання будівель, моніторинг та інспекцію, забезпечуючи стабільність фундаменту і ґрунту, а отже, створення більш якісних і довговічних споруд.

The article considers the process of topographic and geodetic works with the use of modern technologies and artificial Earth satellites (AES) as progressive methods of qualitative performance of applied tasks on determination of coordinates of construction objects and land plots for
construction. It is substantiated that satellite navigation systems are a symbiosis of space technologies, devices and ground equipment and provide a wide range of applications in geodesy and topography, as they provide millimetre accuracy, reduce measurement time and, consequently, reduce the cost of their implementation. It is noted that satellite geodesy methods are conditionally divided into geometric and dynamic. The characteristics of each of them are briefly described. It is proved that modern geodesy plays a crucial role in construction, providing accurate and efficient surveying and mapping, improving information modelling of buildings, monitoring and inspection, ensuring the stability of the foundation and soil, and thus creating better and more durable structures.

Key words: topographical-geodetic works, topographic survey, survey network points

Introduction. Ukraine posthumously overcomes to life on territories, where independence control Ukrainian state. Time-related situation («security, cheap, and accessible») is very important in context of development of living conditions of citizens. At the same time, they are not able to maintain the situation on the territory. The study of the influence of the situation on the territory of Ukraine has been successfully carried out. The methods were effective, as they can be used in the period of stable development. The study has provided the basis for the development of topographic and geodetic works, including the development of the survey network. The study has provided the basis for the development of topographic and geodetic works, including the development of the survey network.
здійснення топографо-геодезичних робіт для потреб будівництва з використанням сучасних технологій, а отже, саме на їх розгляді і зупинимось.

Мета — розгляд етапології та послідовності великомасштабного топографічного знімання для потреб будівництва з використанням штучних супутників Землі.

Методика дослідження — топографічне знімання — при описі топографічної зйомки, чисельного масштабування — при визначенні масштабу топографічної зйомки, метод аналогів - при порівнянні супутникових технологій в геодезії, визначення їх переваг і недоліків в порівнянні з традиційними технологіями.

Виклад основного матеріалу.

Проведення топографо-геодезичних робіт з використанням сучасних технологій і штучних супутників Землі (далі - ІШСЗ) є прогресивним методом якісного виконання даних прикладних задач по визначенню координат будівельних об’єктів та земельних ділянок для будівництва. Супутникові навігаційні системи надають широкий спектр їх використання в геодезії і топографії. Вони є сімбіозом космічних технологій, пристроїв та наземного обладнання.

Для будь-якого будівництва, будь-то промисловий об’єкт, торговельний центр, будівля школи або житловий будинок, треба виконання проектної документації. Проєктуванням будівель і споруд займаяться спеціалісти у сфері інженерного проектування, архітектури та містобудування. Але всі базові проектні матеріали розробляються на підставі інженерних вишукувань. До їх складу в першу чергу треба віднести інженерно-геодезичні вишукування. Необхідність виконання топографічних робіт виникає, якщо неможливо по наявній документації виявити точні межі та місто розташування земельної ділянки.

Дослідження в цій галузі має велике значення для подальшого проектування та будівництва. Перш за все, інженери-геодезисти приділяють особливе значення роботі з архівними матеріалами топографічних зйомок попередніх років, спеціальних картматеріалів підземних комунікацій різних масштабів. Для чого це потрібне? Для того щоб, при виконанні польових топографо-геодезичних робіт, спеціаліст зосередив свою увагу на розташуванні саме підземних комунікацій в межах і поблизу території передбачуваного будівельного майданчика. Іншими словами проводиться ретельне вивчення місцевості або рекогносцивання з подальшим вибором та закріпленням точок знімальної мережі. Вони знадобляться для майбутнього інструментального знімання.

В технічному завданні на виконання топографічного знімання повинно бути зазначено орієнтовні межі земельної ділянки для будівництва будь-якого об’єкту. Але при цьому, геодезист виконує роботу в межах більших за вказані (рис.1).
Рис. 1. Власні дослідження (топографічне знімання М 1: 500)

Топографічна зйомка складається з наступних робіт:
- визначення масштабу топографічної зйомки;
- обстеження та огляд земельної ділянки, закріплення точок зміальної мережі;
- геодезична зйомка місцевості з використанням супутниковых технологій;
- виявлення підземних сітей та комунікацій;
- виконання плану та схеми розташування інженерних комунікацій;
- оформлення та аналіз отриманих планів.

Будь-яка топографічна зйомка має свою відзначальну рису, а саме - масштаб. Вона виконується в різних масштабах. Все залежить від об’єкта і цільового призначення топозйомки. Однак найпоширеніший - це масштаб 1:500. Він використовується для розробки проектів реконструкції, будівництва, перепланування, тощо. У цьому масштабі викреслюються також об’єкти підземних комунікацій. Даний розмір є загальноприйнятим як у геодезистів, так і в тих установах та органах, які затверджують проект. Масштаб може збільшуватися, якщо мова йде про створення паркової зони або ландшафтний дизайн до 1:100, 1:200.
Наступним етапом після опрацювання архівних документів з межами ділянки йдуть польові роботи. Закріплення точок знімальної мережі потрібні, як об’єкти вихідних даних. У подальшому ми маємо змогу неодноразово використовувати їх, як для інструментального знімання місцевості, так і для так званого висотного реферу вже у процесі будівництва. Координати цих точок можуть визначатися різними способами.

По-перше, треба згадати прив’язку координат точок знімальної мережі за допомогою прокладання «теодолітних ходів». При цьому використовувались геодезичні пункти з вже відомими плановими та висотними координатами. Як видно з назви ходів основний інструмент, який застосовувався для даного способу був теодоліт, а для вимірювання відстані – 50-метрова металева рулетка. Але ж технічний прогрес не стояє на місці. Далі замість теодоліту стали використовувати інші геодезичні прилади під назвою «електронний тахеометр» і спеціальні ходи стали «таксометричними». Відрізняється ці два прилади насамперед точністю вимірювання та принципом дії. При роботі з електронним тахеометром усі відліки фікуються у цифровому вигляді на відміну від теодоліта.

Космічні та супутникові технології прийшли в наше життя в повній мірі, в т.ч. і в геодезію. Сучасне GPS-та GNSS-обладнання вже не один рік допомагає сертифікованим інженерам-геодезистам складати топографічні плани і катери, переносити проектні положення будівель та споруд на місцевість, встановлення висотних реперів і т.і. Точність такого обладнання достатня для вирішення будь-яких задач і для будівництва також.

І ось нарешті дійшли до теми використання супутникових технологій в геодезії, визначення їх переваг і недоліків в порівнянні з традиційними технологіями. Постійний розвиток геодезичних приладів, вимагає розробки більш точних, зручніших у користуванні та обробці результатів вимірювань приладів, тому перспективним напрямом їх розвитку є розробка систем, принцип дії яких заснований на використанні супутникових технологій.

Наземно-супутникове знімання використовується для проведення робіт з топографо-геодезичних вишукувань.

За допомогою спеціальних супутників в свій час була розвинена мережа, для отримання точного положення предметів, об’єктів на поверхні Землі виключно для військових. Але згодом, коли з’явився вільний доступ до інформації за допомогою глобальних навігаційних мереж, цивільні
інженери-геодезисти отримали можливість значно спростити та прискорити вирішення питань, в тому числі і для потреб будівництві. Це дало поштовх для початку наземно-супутникового знімання.

Цей метод знімання, у порівнянні з традиційною топографічною зйомкою має низку переваг, а саме: більшу ефективність, зменшення часу на проведення робіт, менші трудомісткість. Такі переваги з’являлися завдяки доступу до сигналів штучних супутників Землі глобальних навігаційних мереж.

На даний час існують такі основні системи глобальної супутникової навігації:
- GPS-NAVSTAR (США),
- Galileo (ЄС),
- Бейдоу (Китай).

Окрім цих базових систем, в космосі існують також допоміжні системи. Це так звані супутникові системи корекції (SBAS), такі як Global Omnistor і StarFire, що використовуються в сільському господарстві [17].

Наземно-супутникове знімання виконується завдяки GNSS-приймачам, які здійснюють прийом сигналів від супутників, їх обробку і забезпечують отримання координат пункту у певній системі координат (СК-63, УСК-2000 та інші).

Які країни намагаються створювати свої регіональні автономні супутникові системи. Такі, як Японія, Індія. Такі системи мають покращити роботу GPS і мають охопити деяку частину нашої планети [1].

Сфера використання супутникових технологій у геодезії є дуже широкою, оскільки супутникові технології дозволяють визначити місцеположення об’єктів з сантиметровою точністю у загальноміжнаційні системи координат, що в свою чергу дає можливість розв’язувати багато геодезичних задач, в тому числі при будівництві. «Плюсів» таких технологій багато. Наприклад, автоматизований процес вимірювання дає можливість уникати більшість помилок на відміну від попередніх технологій, також відбувається значна економія часу, усі вимірювання зберігаються та подаються в електронному вигляді для подальшої обробки на комп’ютері. Є і недоліки, але вони в більшості розв’язуються в процесі роботи.

Метою для розвитку супутникових технологій в геодезії є забезпечення міліметрової точності і скорочення часу вимірювань без втрати точності, яких можливо досягти завдяки введеню нових, більш досконаліх радіонавігаційних супутників систем з більшою кількістю та потужністю супутників, розробці нових, більш функціональних і легких у використанні, та доступних в економічному плані комплектів обладнання, що в свою чергу збільшить переваги супутникових технологій і значно розширить коло їх застосування як в геодезії так і в суміжних геодезії науках [17].

Супутникові технології вводяться для зменшення обсягів і прискорення темпів геодезичних робіт. На даний час існують дві супутникових радіонавігаційних системи, в т.ч. і GPS. Система, технологія GPS виникла ще
на початку 80-х років ХХ ст. як всепогодна супутникова радіонавігаційна система. Основним її завданням є вимірювання відстаней до активних супутників, що випромінюють сигнали, прийняті наземними станціями. Одночасне визначення відстаней до декількох супутників дає змогу визначити координати точки спостереження в тривимірному просторі (рис.2) [5].

![Рис. 2. Художнє зображення роботи штучних супутників Землі](image)

Із запуском перших штучних супутників Землі з'явилася можливість створювати космічні побудови, що забезпечували визначення координат, та передачу інформації на пункти спостереження.

Методи супутникової геодезії умовно можна поділити на геометричні та динамічні.

Сутність геометричного методу - синхронне спостереження штучних супутників Землі з точок поверхні Землі. В даному випадку ШСЗ розглядається як висока візирна цель. Спостереження виконуються шляхом визначення напрямку вектора, що з'єднує пункти. Такі вектори утворюють просторову векторну мережу - супутникову тріангуляцію, при обробці якої ми можемо визначити координати нових пунктів в системі опорних координат [5].

Головна позитивна риса геометричного методу полягає в можливості включити із розгляду теорію руху ШСЗ, а разом з нею фактори, які ускладнюють процес вирахування.

У динамічному методі теорія руху ШСЗ використовується для вирішення задач супутникової геодезії, вона слугує основою для визначення параметрів гравітаційного поля Землі та визначення координат пунктів в абсолютній системі координат (яка віднесена до центру ваги Землі) [4].

Геодезичні і будівельні підприємства та організації майже всі використовують GNSS технології. GNSS (Global Navigation Satellite System) - глобальна навігаційна супутникова система для визначення координат,
швидкості і часу, що розробляється на міжнародній основі для цивільних споживачів.

Основним завданням супутникової геодезії є:
- визначення взаємного положення пунктів в деякі системі координат;
- визначення координат пунктів в єдиній для Землі системі координат, що віднесена до центру мас землі;
- створення і підтримка на необхідному рівні точності єдиної світової геодезичної системи;
- встановлення зв’язку між відокремленими геодезичними системами; та інші [3].

Можливо відзначити переваги використання Глобальних навігаційних супутникових систем:
- мобільність, ефективність, оперативність;
- зменшує трудоємність;
- можливість проведення вимірів в умовах відсутності прямої видимості між суміжними пунктами;
- використання системи не залежить від погодних умов, пори року, часу доби [1].

В системі супутникового зв’язку можна виділити чотири основних частини:
- космічний сегмент
- сигнална частина
- наземний сегмент
- користувачівський сегмент (рис. 3) [18].

GNSS-приймачі забезпечують планову точність координат аж до 1 мм. Вони дуже надійні та ефективні. Визначення координат таким приймачем засновано на динамічній просторовій засічці при отриманні ним сигналів від щопомісянено 4-х супутників.

![Рис. 3. Загальна структура система супутникового зв’язку [18]](image-url)
Для цього треба постійна інформація про координати супутників. Сигнали з супутників безперервно передаються на Землю. У складі цієї інформації є миттєві координати супутників та точний час надсилення сигналу. Ці сигнали приймаються приймачами, що розташовані на поверхні Землі у пунктах, координати яких треба визначити.

Приймачі фіксують час приходу сигналу на антену приймача визначають віддаль до супутника, враховуючи швидкість поширення радіосигналу у просторі. На підставі вирахування чотирьох відстаней до супутників та їх миттєвих координат, автоматично вирішується пряма просторова засічка, в результаті якої визначаються координати пункту спостереження та точний час [2].

Принцип дії супутникової системи навігації заснований на вимірюванні відстані від антени приймача на об’єкті до навігаційних супутників, місцезнаходження яких відоме з великою точністю. Таблиця положень супутників («альманахи») є в кожному приймачі супутникового сигналу до початку вимірювань. Зазвичай приймач зберігає «альманахи» у пам’яті з часу останнього ввімкнення. Кожний супутник передає в своєму сигналі весь альманах. Таким чином, знаючи відстані до декількох супутників системи, за допомогою звичайних геометричних побудов на основі альманаху вираховується положення об’єкта в просторі.

Метод вимірювання відстані від супутника до антени приймача заснований на визначенні швидкості поширення радіохвиль. Для реалізації можливості вимірювання часу поширюваного радіосигналу кожен супутник навігаційної системи випромінює сигнали точного часу, використовуючи синхронізований з системним часом атомний годинник. При роботі супутникового приймача його годинник синхронізується з системним часом, і при подальшому прийомі сигналів супутників обчислюється затримка між часом випромінювання, що міститься в самому сигналі, і часом прийому сигналу антеною приймача. Маючи дану інформацію, навігаційний приймач вираховує координати антени. Решта параметрів руху (швидкість, напрямок, пройдена відстань) обчислюється на основі вимірювання часу, який об’єкт витратив на переміщення між двома або більше точками з координатами, визначеннями за попередніми обчисленнями.

Але при цьому, при певних обставинах та погодних умовах радіосигнали від супутників можуть спотворюватися, що в кінцевому результаті погіршуватиме точність отриманих координат. Для вирішення цієї проблеми була винайдена технологія RTK (рис.4).
В чому вона полягає? Для отримання поправок використовується базова станція, координати якої мають бути відомими з адекватною точністю. Базова станція приймає сигнали від супутників, за допомогою спеціалізованого програмного забезпечення вираховується похибка визначення місцезнаходження станції, формуються поправки. Вони надсилляються на ровер (приймач), який в свою чергу приймає сигнали від тих самих супутників, що й базова станція. Ровер обробляє сигнали супутників та, використовуючи поправки з базової станції, визначає своє місцезнаходження з точністю до 1-2 см в режимі реального часу. Для передачі поправок використовуються радіомодеми, інтернет, тощо [3].

Сучасне будівництво має багато особливостей, які сильно ускладнюють геодезичне забезпечення будівництва. Використання новітніх методів і технологій, допомагають скоротити трудові витрати при геодезичних роботах. Створення і розвиток будівництва може бути проведено за допомогою класичних методів геодезичних робіт, з сучасними геодезичними приладами [9].

Якість та швидкість виконання топо-геодезичних робіт безпосередньо залежить від використання сучасних приладів для визначення точного місцерозташування об’єктів, його координат, тощо. Можна виділити групи таких приладів:
- електронні тахеометри;
- лазерні, цифрові нівеліри;
- GNSS-обладнання;
- БПЛА для аерофотозйомки (дрони) (рис.5).
Можна навести приклад співпраці з турецькою будівельною компанією «Онур». Вона вже давно і успішно працює на теренах нашої країни. В своїй роботі турецькі будівельники використовують виключно передові технології в будівництві насамперед автошляхів та мостів. І це стосується не в останню чергу інженерно-геодезичних вишукувань. Як при попередньому топогеодезичному зніманні, так і при виносі в натуру проектних меж дорожнього покриття, бордюрів, пешохідних доріжок та інші, вони використовують сегмент системи супутникового позиціонування, а саме сегмент прийомних пристроїв, який включає в себе супутниковий приймач, антену, управляючий контролер та інші допоміжні засоби. Використовується уже раніше згадана технологія RTK.

Висновки. Таким чином, за результатами дослідження приходимо до висновку, що геодезія та картографування є важливими компонентами будівництва, а космічні технології значно підвищують їх точність та ефективність. Супутникові система глобального позиціонування (GPS) використовується для точного визначення місцезнаходження будівельних майданчиків і об’єктів, а аерофотозйомка надає детальну інформацію про рельєф місцевості та інші фізичні особливості будівельного майданчика.

Отже, сучасна геодезія відіграє вирішальну роль у будівництві, забезпечуючи точні і ефективні зйомки і картографування, покращуючи інформаційне моделювання будівель, моніторинг та інспекцію, забезпечуючи стабільність фундаменту і грунту, а також контроль якості. Інтеграція сучасних геодезичних технологій у будівництво значно підвищує ефективність і якість будівельних процесів, що забезпечить створення більш якісних і довговічних споруд.
3. Супутникова навігація: основні принципи роботи. Проблеми та методи їх вирішення. ОКО. 2019. URL: https://oko.ykup/articles/GPS_GLO_NASS_AGPS_RTK/
5. Сутність методів супутникової геодезії - Супутникова геодезія 2019. URL: https://vuzlit.com/770782/sutnist_metodiv_suputnikovoyi_geodeziyi
11. Шульц Р. В., Терещук О. І., Анченков А. О., Нисторяк І. О. Практичні дослідження точності визначення координат за супутниковими технологіями в режимі реального часу. Інженерна геодезія. 2014. 61. С. 59-77.
17. Урдінцев С.В. Супутникові технології в геодезії. 2019. URL: http://inmad.vntu.edu.ua/portal/static/

327